Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Nat Commun ; 15(1): 3064, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594232

RESUMO

The gastroesophageal squamocolumnar junction (GE-SCJ) is a critical tissue interface between the esophagus and stomach, with significant relevance in the pathophysiology of gastrointestinal diseases. Despite this, the molecular mechanisms underlying GE-SCJ development remain unclear. Using single-cell transcriptomics, organoids, and spatial analysis, we examine the cellular heterogeneity and spatiotemporal dynamics of GE-SCJ development from embryonic to adult mice. We identify distinct transcriptional states and signaling pathways in the epithelial and mesenchymal compartments of the esophagus and stomach during development. Fibroblast-epithelial interactions are mediated by various signaling pathways, including WNT, BMP, TGF-ß, FGF, EGF, and PDGF. Our results suggest that fibroblasts predominantly send FGF and TGF-ß signals to the epithelia, while epithelial cells mainly send PDGF and EGF signals to fibroblasts. We observe differences in the ligands and receptors involved in cell-cell communication between the esophagus and stomach. Our findings provide insights into the molecular mechanisms underlying GE-SCJ development and fibroblast-epithelial crosstalk involved, paving the way to elucidate mechanisms during adaptive metaplasia development and carcinogenesis.


Assuntos
Fator de Crescimento Epidérmico , Junção Esofagogástrica , Animais , Camundongos , Fator de Crescimento Epidérmico/metabolismo , Junção Esofagogástrica/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fibroblastos/metabolismo , Análise de Célula Única
2.
mBio ; 15(3): e0340823, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38376260

RESUMO

Activin A strongly influences immune responses; yet, few studies have examined its role in infectious diseases. We measured serum activin A levels in two independent tuberculosis (TB) patient cohorts and in patients with pneumonia and sarcoidosis. Serum activin A levels were increased in TB patients compared to healthy controls, including those with positive tuberculin skin tests, and paralleled severity of disease, assessed by X-ray scores. In pneumonia patients, serum activin A levels were also raised, but in sarcoidosis patients, levels were lower. To determine whether blockade of the activin A signaling axis could play a functional role in TB, we harnessed a soluble activin type IIB receptor fused to human IgG1 Fc, ActRIIB-Fc, as a ligand trap in a murine TB model. The administration of ActRIIB-Fc to Mycobacterium tuberculosis-infected mice resulted in decreased bacterial loads and increased numbers of CD4 effector T cells and tissue-resident memory T cells in the lung. Increased frequencies of tissue-resident memory T cells corresponded with downregulated T-bet expression in lung CD4 and CD8 T cells. Altogether, the results suggest a disease-exacerbating role of ActRIIB signaling pathways. Serum activin A may be useful as a biomarker for diagnostic triage of active TB or monitoring of anti-tuberculosis therapy. IMPORTANCE: Tuberculosis remains the leading cause of death by a bacterial pathogen. The etiologic agent of tuberculosis, Mycobacterium tuberculosis, can remain dormant in the infected host for years before causing disease. Significant effort has been made to identify biomarkers that can discriminate between latently infected and actively diseased individuals. We found that serum levels of the cytokine activin A were associated with increased lung pathology and could discriminate between active tuberculosis and tuberculin skin-test-positive healthy controls. Activin A signals through the ActRIIB receptor, which can be blocked by administration of the ligand trap ActRIIB-Fc, a soluble activin type IIB receptor fused to human IgG1 Fc. In a murine model of tuberculosis, we found that ActRIIB-Fc treatment reduced mycobacterial loads. Strikingly, ActRIIB-Fc treatment significantly increased the number of tissue-resident memory T cells. These results suggest a role for ActRIIB signaling pathways in host responses to Mycobacterium tuberculosis and activin A as a biomarker of ongoing disease.


Assuntos
Mycobacterium tuberculosis , Pneumonia , Sarcoidose , Tuberculose , Humanos , Camundongos , Animais , Ligantes , Tuberculina , Ativinas , Imunoglobulina G , Biomarcadores
3.
Proc Natl Acad Sci U S A ; 120(36): e2305649120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639605

RESUMO

Resilience to short-term perturbations, like inflammation, is a fundamental feature of microbiota, yet the underlying mechanisms of microbiota resilience are incompletely understood. Here, we show that Lactiplantibacillus plantarum, a major Drosophila commensal, stably colonizes the fruit fly gut during infection and is resistant to Drosophila antimicrobial peptides (AMPs). By transposon screening, we identified L. plantarum mutants sensitive to AMPs. These mutants were impaired in peptidoglycan O-acetylation or teichoic acid D-alanylation, resulting in increased negative cell surface charge and higher affinity to cationic AMPs. AMP-sensitive mutants were cleared from the gut after infection and aging-induced gut inflammation in wild-type, but not in AMP-deficient flies, suggesting that resistance to host AMPs is essential for commensal resilience in an inflamed gut environment. Thus, our work reveals that in addition to the host immune tolerance to the microbiota, commensal-encoded resilience mechanisms are necessary to maintain the stable association between host and microbiota during inflammation.


Assuntos
Peptídeos Antimicrobianos , Drosophila , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Envelhecimento , Inflamação
4.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37298652

RESUMO

Mouse guanylate-binding proteins (mGBPs) are recruited to various invasive pathogens, thereby conferring cell-autonomous immunity against these pathogens. However, whether and how human GBPs (hGBPs) target M. tuberculosis (Mtb) and L. monocytogenes (Lm) remains unclear. Here, we describe hGBPs association with intracellular Mtb and Lm, which was dependent on the ability of bacteria to induce disruption of phagosomal membranes. hGBP1 formed puncta structures which were recruited to ruptured endolysosomes. Furthermore, both GTP-binding and isoprenylation of hGBP1 were required for its puncta formation. hGBP1 was required for the recovery of endolysosomal integrity. In vitro lipid-binding assays demonstrated direct binding of hGBP1 to PI4P. Upon endolysosomal damage, hGBP1 was targeted to PI4P and PI(3,4)P2-positive endolysosomes in cells. Finally, live-cell imaging demonstrated that hGBP1 was recruited to damaged endolysosomes, and consequently mediated endolysosomal repair. In summary, we uncover a novel interferon-inducible mechanism in which hGBP1 contributes to the repair of damaged phagosomes/endolysosomes.


Assuntos
Proteínas de Ligação ao GTP , Fagossomos , Humanos , Animais , Camundongos , Proteínas de Ligação ao GTP/metabolismo , Fagossomos/metabolismo , Interferons/metabolismo , Endossomos/metabolismo
5.
J Interferon Cytokine Res ; 43(6): 246-256, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36454249

RESUMO

Maladjusted immune responses to the coronavirus disease 2019 (COVID-19), for example, cytokine release syndrome, may result in immunopathology and acute respiratory distress syndrome. Sphingosine-1-phosphate (S1P), a bioactive lipid mediator, and its S1P receptor (S1PR) are crucial in maintaining endothelial cell chemotaxis and barrier integrity. Apart from the S1P1 receptor-mediated mechanisms of sequestration of cytotoxic lymphocytes, including Th-17 and S1P1/2/3-mediated endothelial barrier functions, S1PR modulators may also attenuate cytokine release via activation of serine/threonine protein phosphatase 2A and enhance the pulmonary endothelial barrier via the c-Abl tyrosine kinase pathway. Chronic treatment with fingolimod (S1PR1,3,4,5 modulator) and siponimod (S1PR1,5 modulator) has demonstrated efficacy in reducing inflammatory disease activity and slowing down disease progression in multiple sclerosis. The decision to selectively suppress the immunity of a critically ill patient with COVID-19 remains a difficult choice. It has been suggested that treatment with fingolimod or siponimod may be appropriate to attenuate severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-induced hyperinflammation in patients with COVID-19 since these patients are already monitored in an intensive care setting. Here, we review the use of S1PR modulators, fingolimod and siponimod, in regulating the inflammatory response to SARS-CoV-2 with the aim of understanding their potential rationale use in patients with COVID-19.


Assuntos
COVID-19 , Esclerose Múltipla , Moduladores do Receptor de Esfingosina 1 Fosfato , Humanos , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Receptores de Esfingosina-1-Fosfato , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Moduladores do Receptor de Esfingosina 1 Fosfato/uso terapêutico , SARS-CoV-2/metabolismo , Esfingosina/metabolismo , Esfingosina/farmacologia , Esclerose Múltipla/metabolismo
6.
Elife ; 112022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36282064

RESUMO

Neutrophils are critical to host defence, executing diverse strategies to perform their antimicrobial and regulatory functions. One tactic is the production of neutrophil extracellular traps (NETs). In response to certain stimuli, neutrophils decondense their lobulated nucleus and release chromatin into the extracellular space through a process called NETosis. However, NETosis, and the subsequent degradation of NETs, can become dysregulated. NETs are proposed to play a role in infectious as well as many non-infection related diseases including cancer, thrombosis, autoimmunity and neurological disease. Consequently, there is a need to develop specific tools for the study of these structures in disease contexts. In this study, we identified a NET-specific histone H3 cleavage event and harnessed this to develop a cleavage site-specific antibody for the detection of human NETs. By microscopy, this antibody distinguishes NETs from chromatin in purified and mixed cell samples. It also detects NETs in tissue sections. We propose this antibody as a new tool to detect and quantify NETs.


Assuntos
Armadilhas Extracelulares , Trombose , Humanos , Armadilhas Extracelulares/metabolismo , Histonas/metabolismo , Neutrófilos , Trombose/metabolismo , Cromatina/metabolismo
7.
Nat Commun ; 13(1): 1030, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210413

RESUMO

Coinfections with pathogenic microbes continually confront cervical mucosa, yet their implications in pathogenesis remain unclear. Lack of in-vitro models recapitulating cervical epithelium has been a bottleneck to study coinfections. Using patient-derived ectocervical organoids, we systematically modeled individual and coinfection dynamics of Human papillomavirus (HPV)16 E6E7 and Chlamydia, associated with carcinogenesis. The ectocervical stem cells were genetically manipulated to introduce E6E7 oncogenes to mimic HPV16 integration. Organoids from these stem cells develop the characteristics of precancerous lesions while retaining the self-renewal capacity and organize into mature stratified epithelium similar to healthy organoids. HPV16 E6E7 interferes with Chlamydia development and induces persistence. Unique transcriptional and post-translational responses induced by Chlamydia and HPV lead to distinct reprogramming of host cell processes. Strikingly, Chlamydia impedes HPV-induced mechanisms that maintain cellular and genome integrity, including mismatch repair in the stem cells. Together, our study employing organoids demonstrates the hazard of multiple infections and the unique cellular microenvironment they create, potentially contributing to neoplastic progression.


Assuntos
Chlamydia , Coinfecção , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Reprogramação Celular/genética , Feminino , Papillomavirus Humano 16/genética , Humanos , Organoides , Microambiente Tumoral , Neoplasias do Colo do Útero/genética
8.
Vaccine ; 39(50): 7253-7264, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34602301

RESUMO

BCG - the only available vaccine against tuberculosis (TB) - was first given to babies 100 years ago in 1921. While it is effective against TB meningitis and disseminated TB, its efficacy against pulmonary TB is variable, notably in adults and adolescents. TB remains one of the world's leading health problems, with a higher prevalence among men. Male sex is associated with increased susceptibility to Mycobacterium tuberculosis in mice, but sex-specific responses to BCG vaccination have not been examined. In this study we vaccinated TB-susceptible 129 S2 mice with BCG and challenged with low-dose M. tuberculosis H37Rv by aerosol infection. BCG was protective against TB in both sexes, as unvaccinated mice lost weight more rapidly than vaccinated ones and suffered from worse lung pathology. However, female mice were better protected than males, showing lower lung bacterial burdens and less weight loss. Overall, vaccinated female mice had increased numbers of T cells and less myeloid cells in the lungs compared to vaccinated males. Principal component analysis of measured features revealed that mice grouped according to timepoint, sex and vaccination status. The features that had the biggest impact on grouping overall included numbers of CD8 T cells, CD8 central memory T cells and CD4 T effector cells, with neutrophil and CD11b+GR-1- cell numbers having a big impact at day 29. Hierarchical clustering confirmed that the main difference in global immune response was due to mouse sex, with only a few misgrouped mice. In conclusion, we found sex-specific differences in response to M. tuberculosis H37Rv -challenge in BCG-vaccinated 129 S2 mice. This highlights the need to include both male and female mice in preclinical testing of vaccine candidates.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Vacina BCG , Feminino , Pulmão , Masculino , Células T de Memória , Camundongos , Camundongos da Linhagem 129 , Tuberculose/prevenção & controle , Vacinação
9.
Nat Rev Immunol ; 21(10): 615, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34580456
10.
mBio ; 12(4): e0166521, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34311585

RESUMO

Mycofactocin is a new class of peptide-derived redox cofactors present in a selected group of bacteria including Mycobacterium tuberculosis. Mycofactocin biosynthesis requires at least six genes, including mftD, encoding putative lactate dehydrogenase, which catalyzes the penultimate biosynthetic step. Cellular functions remained unknown until recent reports on the significance of mycofactocin in primary alcohol metabolism. Here, we show that mftD transcript levels were increased in hypoxia-adapted M. tuberculosis; however, mftD functionality was found likely dispensable for l-lactate metabolism. Targeted deletion of mftD reduced the survival of M. tuberculosis in in vitro and in vivo hypoxia models but increased the bacterial growth in glucose-containing broth as well as in the lungs and spleens, albeit modestly, of aerosol-infected C57BL/6J mice. The cause of this growth advantage remains unestablished; however, the mftD-deficient M. tuberculosis strain had reduced NAD(H)/NADP(H) levels and glucose-6-phosphate dehydrogenase activity with no impairment in phthiocerol dimycocerosate lipid synthesis. An ultrastructural examination of parental and mycofactocin biosynthesis gene mutants in M. tuberculosis, M. marinum, and M. smegmatis showed no altered cell morphology and size except the presence of outer membrane-bound fibril-like features only in a mutant subpopulation. A cell surface-protein analysis of M. smegmatis mycofactocin biosynthesis mutants with trypsin revealed differential abundances of a subset of proteins that are known to interact with mycofactocin and their homologs that can enhance protein aggregation or amyloid-like fibrils in riboflavin-starved eukaryotic cells. In sum, phenotypic analyses of the mutant strain implicate the significance of MftD/mycofactocin in M. tuberculosis growth and persistence in its host. IMPORTANCE Characterization of proteins with unknown functions is a critical research priority as the intracellular growth and metabolic state of Mycobacterium tuberculosis, the causative agent of tuberculosis, remain poorly understood. Mycofactocin is a peptide-derived redox cofactor present in almost all mycobacterial species; however, its functional relevance in M. tuberculosis pathogenesis and host survival has never been studied experimentally. In this study, we examine the phenotypes of an M. tuberculosis mutant strain lacking a key mycofactocin biosynthesis gene in in vitro and disease-relevant mouse models. Our results pinpoint the multifaceted role of mycofactocin in M. tuberculosis growth, hypoxia adaptation, glucose metabolism, and redox homeostasis. This evidence strongly implies that mycofactocin could fulfill specialized biochemical functions that increase the survival fitness of mycobacteria within their specific niche.


Assuntos
Adaptação Fisiológica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Peptídeos/metabolismo , Anaerobiose , Animais , Vias Biossintéticas , Feminino , Regulação Bacteriana da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Peptídeos/genética
11.
Gastroenterology ; 161(2): 623-636.e16, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33957136

RESUMO

BACKGROUND & AIMS: The homeostasis of the gastrointestinal epithelium relies on cell regeneration and differentiation into distinct lineages organized inside glands and crypts. Regeneration depends on Wnt/ß-catenin pathway activation, but to understand homeostasis and its dysregulation in disease, we need to identify the signaling microenvironment governing cell differentiation. By using gastric glands as a model, we have identified the signals inducing differentiation of surface mucus-, zymogen-, and gastric acid-producing cells. METHODS: We generated mucosoid cultures from the human stomach and exposed them to different growth factors to obtain cells with features of differentiated foveolar, chief, and parietal cells. We localized the source of the growth factors in the tissue of origin. RESULTS: We show that epidermal growth factor is the major fate determinant distinguishing the surface and inner part of human gastric glands. In combination with bone morphogenetic factor/Noggin signals, epidermal growth factor controls the differentiation of foveolar cells vs parietal or chief cells. We also show that epidermal growth factor is likely to underlie alteration of the gastric mucosa in the precancerous condition atrophic gastritis. CONCLUSIONS: Use of our recently established mucosoid cultures in combination with analysis of the tissue of origin provided a robust strategy to understand differentiation and patterning of human tissue and allowed us to draw a new, detailed map of the signaling microenvironment in the human gastric glands.


Assuntos
Padronização Corporal/efeitos dos fármacos , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/efeitos dos fármacos , Mucosa Gástrica/efeitos dos fármacos , Proteínas de Transporte/farmacologia , Linhagem da Célula , Células Cultivadas , Microambiente Celular , Celulas Principais Gástricas/efeitos dos fármacos , Celulas Principais Gástricas/metabolismo , Celulas Principais Gástricas/ultraestrutura , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Mucosa Gástrica/metabolismo , Mucosa Gástrica/ultraestrutura , Gastrite Atrófica/metabolismo , Gastrite Atrófica/patologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Organoides , Células Parietais Gástricas/efeitos dos fármacos , Células Parietais Gástricas/metabolismo , Células Parietais Gástricas/ultraestrutura , Via de Sinalização Wnt
12.
Viruses ; 13(4)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918348

RESUMO

Bacteriophages exert strong evolutionary pressure on their microbial hosts. In their lytic lifecycle, complete bacterial subpopulations are utilized as hosts for bacteriophage replication. However, during their lysogenic lifecycle, bacteriophages can integrate into the host chromosome and alter the host's genomic make-up, possibly resulting in evolutionary important adjustments. Not surprisingly, bacteria have evolved sophisticated immune systems to protect against phage infection. Streptococcus pyogenes isolates are frequently lysogenic and their prophages have been shown to be major contributors to the virulence of this pathogen. Most S. pyogenes phage research has focused on genomic prophages in relation to virulence, but little is known about the defensive arsenal of S. pyogenes against lytic phage infection. Here, we characterized Phage A1, an S. pyogenes bacteriophage, and investigated several mechanisms that S. pyogenes utilizes to protect itself against phage predation. We show that Phage A1 belongs to the Siphoviridae family and contains a circular double-stranded DNA genome that follows a modular organization described for other streptococcal phages. After infection, the Phage A1 genome can be detected in isolated S. pyogenes survivor strains, which enables the survival of the bacterial host and Phage A1 resistance. Furthermore, we demonstrate that the type II-A CRISPR-Cas system of S. pyogenes acquires new spacers upon phage infection, which are increasingly detectable in the absence of a capsule. Lastly, we show that S. pyogenes produces membrane vesicles that bind to phages, thereby limiting the pool of phages available for infection. Altogether, this work provides novel insight into survival strategies employed by S. pyogenes to combat phage predation.


Assuntos
Viabilidade Microbiana , Fagos de Streptococcus/genética , Fagos de Streptococcus/patogenicidade , Streptococcus pyogenes/fisiologia , Streptococcus pyogenes/virologia , Sistemas CRISPR-Cas , Genoma Viral , Lisogenia , Prófagos/genética , Virulência
13.
EMBO Mol Med ; 13(4): e13191, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33544398

RESUMO

SARS-CoV-2, the agent that causes COVID-19, invades epithelial cells, including those of the respiratory and gastrointestinal mucosa, using angiotensin-converting enzyme-2 (ACE2) as a receptor. Subsequent inflammation can promote rapid virus clearance, but severe cases of COVID-19 are characterized by an inefficient immune response that fails to clear the infection. Using primary epithelial organoids from human colon, we explored how the central antiviral mediator IFN-γ, which is elevated in COVID-19, affects epithelial cell differentiation, ACE2 expression, and susceptibility to infection with SARS-CoV-2. In mouse and human colon, ACE2 is mainly expressed by surface enterocytes. Inducing enterocyte differentiation in organoid culture resulted in increased ACE2 production. IFN-γ treatment promoted differentiation into mature KRT20+ enterocytes expressing high levels of ACE2, increased susceptibility to SARS-CoV-2 infection, and resulted in enhanced virus production in infected cells. Similarly, infection-induced epithelial interferon signaling promoted enterocyte maturation and enhanced ACE2 expression. We here reveal a mechanism by which IFN-γ-driven inflammatory responses induce a vulnerable epithelial state with robust replication of SARS-CoV-2, which may have an impact on disease outcome and virus transmission.


Assuntos
COVID-19/etiologia , Interferon gama/imunologia , Modelos Imunológicos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/imunologia , COVID-19/patologia , Diferenciação Celular/imunologia , Colo/imunologia , Colo/patologia , Colo/virologia , Suscetibilidade a Doenças , Enterócitos/metabolismo , Enterócitos/patologia , Enterócitos/virologia , Expressão Gênica , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Interferon gama/administração & dosagem , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Camundongos , Organoides/imunologia , Organoides/patologia , Organoides/virologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Replicação Viral/imunologia
14.
Nat Cell Biol ; 23(2): 184-197, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33462395

RESUMO

The transition zones of the squamous and columnar epithelia constitute hotspots for the emergence of cancer, often preceded by metaplasia, in which one epithelial type is replaced by another. It remains unclear how the epithelial spatial organization is maintained and how the transition zone niche is remodelled during metaplasia. Here we used single-cell RNA sequencing to characterize epithelial subpopulations and the underlying stromal compartment of endo- and ectocervix, encompassing the transition zone. Mouse lineage tracing, organoid culture and single-molecule RNA in situ hybridizations revealed that the two epithelia derive from separate cervix-resident lineage-specific stem cell populations regulated by opposing Wnt signals from the stroma. Using a mouse model of cervical metaplasia, we further show that the endocervical stroma undergoes remodelling and increases expression of the Wnt inhibitor Dickkopf-2 (DKK2), promoting the outgrowth of ectocervical stem cells. Our data indicate that homeostasis at the transition zone results from divergent stromal signals, driving the differential proliferation of resident epithelial lineages.


Assuntos
Colo do Útero/patologia , Epitélio/patologia , Homeostase , Via de Sinalização Wnt , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Diferenciação Celular , Linhagem da Célula , Microambiente Celular , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Queratinas/metabolismo , Metaplasia , Camundongos Endogâmicos C57BL , Organoides/patologia , Receptores Notch/metabolismo , Células-Tronco/patologia , Células Estromais/patologia , Transcrição Gênica , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
15.
Dis Model Mech ; 13(3)2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32034005

RESUMO

Lactate dehydrogenase A (LDHA) mediates interconversion of pyruvate and lactate, and increased lactate turnover is exhibited by malignant and infected immune cells. Hypoxic lung granuloma in Mycobacterium tuberculosis-infected animals present elevated levels of Ldha and lactate. Such alterations in the metabolic milieu could influence the outcome of host-M. tuberculosis interactions. Given the central role of LDHA for tumorigenicity, targeting lactate metabolism is a promising approach for cancer therapy. Here, we sought to determine the importance of LDHA for tuberculosis (TB) disease progression and its potential as a target for host-directed therapy. To this end, we orally administered FX11, a known small-molecule NADH-competitive LDHA inhibitor, to M. tuberculosis-infected C57BL/6J mice and Nos2-/- mice with hypoxic necrotizing lung TB lesions. FX11 did not inhibit M. tuberculosis growth in aerobic/hypoxic liquid culture, but modestly reduced the pulmonary bacterial burden in C57BL/6J mice. Intriguingly, FX11 administration limited M. tuberculosis replication and onset of necrotic lung lesions in Nos2-/- mice. In this model, isoniazid (INH) monotherapy has been known to exhibit biphasic killing kinetics owing to the probable selection of an INH-tolerant bacterial subpopulation. However, adjunct FX11 treatment corrected this adverse effect and resulted in sustained bactericidal activity of INH against M. tuberculosis As a limitation, LDHA inhibition as an underlying cause of FX11-mediated effect could not be established as the on-target effect of FX11 in vivo was unconfirmed. Nevertheless, this proof-of-concept study encourages further investigation on the underlying mechanisms of LDHA inhibition and its significance in TB pathogenesis.


Assuntos
Interações Hospedeiro-Patógeno/efeitos dos fármacos , Isoniazida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Naftalenos/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/metabolismo
16.
Eur J Immunol ; 50(9): 1415, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33448355

RESUMO

Retraction: Emoto, M., Emoto, Y., Yoshizawa, I., Kita, E., Shimizu, T., Hurwitz, R., Brinkmann, V. and Kaufmann, S.H.E. (2010), α-GalCer ameliorates listeriosis by accelerating infiltration of Gr-1+ cells into the liver. Eur. J. Immunol., 40: 1328-1341. DOI: https://doi.org/10.1002/eji.200939594 The above article, published online on 16 February 2010 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the Chairman of the Executive Committee of the European Journal of Immunology and Wiley-VCH Verlag GmbH & Co. KGaA. The retraction has been agreed following an investigation carried out by Gunma University (http://www.gunma-u.ac.jp/wp-content/uploads/2017/10/chosakekka29.pdf). The investigation was unable to determine the validity of the images for which Professor Emoto, the article's corresponding author, was responsible. As a result, the journal has made the decision to retract the article.

17.
Mol Biochem Parasitol ; 235: 111247, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31874192

RESUMO

Gliding motility and cell invasion are essential for the successful transmission of Plasmodium parasites. These processes rely on an acto-myosin motor located underneath the parasite plasma membrane. The Myosin A-tail interacting protein (MTIP) connects the class XIV myosin A (MyoA) to the gliding-associated proteins and is essential for assembly of the motor at the inner membrane complex. Here, we assessed the subcellular localization of MTIP in Plasmodium berghei motile stages from wild-type parasites and mutants that lack MyoA or the small heat shock protein 20 (HSP20). We demonstrate that MTIP is recruited to the apical end of motile ookinetes independently of the presence of MyoA. We also show that infective sporozoites displayed a polarized MTIP distribution during gliding, and that this distribution was abrogated in mutant parasites with an aberrant locomotion.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Locomoção/fisiologia , Plasmodium berghei/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo
18.
Methods Mol Biol ; 2087: 415-424, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31729002

RESUMO

Neutrophil extracellular traps (NETs) consist of decondensed chromatin fibers studded with granular and cytoplasmic proteins and peptides that are released by stimulated neutrophil granulocytes. If present in abundance (e.g., in large thrombi), NETs are depicted in H&E-stained tissue sections as pale bluish areas. Since no NET-specific antibodies exist, to unambiguously identify even small amounts of NETs in tissue, it is essential to demonstrate colocalization of nuclear and granular/cytoplasmic NET components which in unstimulated neutrophils are clearly separated. This requires good tissue preservation and a very defined immunolocalization, which can be achieved by using 2-3 µm thick sections of paraffin-embedded tissue. It provides sufficiently good tissue preservation for subcellular localization of two or more NET components, thereby allow to differentiate stimulated from unstimulated neutrophils and to clearly identify NETs. In this chapter, we will provide protocols for antigen retrieval and immunofluorescent labeling of NET components in paraffin-embedded tissue with commercially available antibodies.


Assuntos
Armadilhas Extracelulares/imunologia , Imunofluorescência , Imuno-Histoquímica , Neutrófilos/imunologia , Neutrófilos/metabolismo , Imunofluorescência/métodos , Humanos , Imuno-Histoquímica/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Inclusão em Parafina
19.
J Vis Exp ; (151)2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31566594

RESUMO

Neutrophil granulocytes, also called polymorphonuclear leukocytes (PMN) due to their lobulated nucleus, are the most abundant type of leukocytes. They mature in the bone marrow and are released into the peripheral blood, where they circulate for about 6-8 h; however, in tissue, they can survive for days. By diapedesis through the endothelium, they leave the blood stream, enter tissues, and migrate towards the site of an infection following chemotactic gradients. Neutrophils can combat invading microorganisms by phagocytosis, degranulation, and generation of neutrophil extracellular traps (NETs). This protocol will help to detect NETs in paraffin-embedded tissue. NETs are the result of a process called NETosis, which leads to the release of nuclear, granular, and cytoplasmic components either from living (vital NETosis) or dying (suicidal NETosis) neutrophils. In vitro, NETs form cloud-like structures, which occupy a space several times larger than that of the cells from which they descended. The backbone of NETs is chromatin, to which a selection of proteins and peptides originating from granules and cytoplasm are bound. Thereby, a high local concentration of toxic compounds is maintained so that NETs can capture and inactivate a variety of pathogens including bacteria, fungi, viruses, and parasites, while diffusion of the highly active NET components leading to damage in neighboring tissue is limited. Nevertheless, in recent years it has become apparent that NETs, if generated in abundance or cleared insufficiently, do have pathological potential ranging from autoimmune diseases to cancer. Thus, detection of NETs in tissue samples may have diagnostic significance, and the detection of NETs in diseased tissue can influence the treatment of patients. Since paraffin-embedded tissue samples are the standard specimen used for pathological analysis, it was sought to establish a protocol for fluorescent staining of NET components in paraffin-embedded tissue using commercially available antibodies.


Assuntos
Armadilhas Extracelulares/metabolismo , Imunofluorescência/métodos , Neutrófilos/metabolismo , Inclusão em Parafina , Animais , Humanos , Camundongos
20.
Sci Immunol ; 4(40)2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628160

RESUMO

Neutrophils are essential innate immune cells that extrude chromatin in the form of neutrophil extracellular traps (NETs) when they die. This form of cell death has potent immunostimulatory activity. We show that heme-induced NETs are essential for malaria pathogenesis. Using patient samples and a mouse model, we define two mechanisms of NET-mediated inflammation of the vasculature: activation of emergency granulopoiesis via granulocyte colony-stimulating factor production and induction of the endothelial cytoadhesion receptor intercellular adhesion molecule-1. Soluble NET components facilitate parasite sequestration and mediate tissue destruction. We demonstrate that neutrophils have a key role in malaria immunopathology and propose inhibition of NETs as a treatment strategy in vascular infections.


Assuntos
Armadilhas Extracelulares/imunologia , Inflamação/imunologia , Inflamação/patologia , Malária/imunologia , Malária/patologia , Neutrófilos/imunologia , Animais , Humanos , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...